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A study is made of the role of buoyancy in turbulent flow in a semiinfinite gas jet. 
The development of the characteristics of the mean and pulsating flows is analyzed. 

The flow induced by the action of buoyancy may significantly affect the dynamic charac- 
teristics and heat exchange in forced convection in a number of cases. In engineering prac- 
tice it is often necessary to study mixed convection in the case of stream flow over solid 
surfaces. One feature of such flows, together with decaying forced convection, is the devel- 
opment of free-convective flow due to heating of the wall. 

Until recently, most investigators used the mixing length to predict the structure of 
flows in stratified media [I, 2]. In [3], models of a higher rank are presented. These mod- 
els are based on differential equations for the quantities characterizing the pu!sative flow 
field: turbulent kinetic energy (TKE), K = < uiu i' ' >/2, the rate of "isotropic" dissipation 

8u~ 
au~>, and the mean square of the temperature pulsation < T'2 >. The authors RID, e=2ul<Ox i Oxi 

of [4, 5] developed an algebraic approach to modeling the Reynolds stresses < u]u' > and the 
• 3 

turbulent heat flux < u~T' > (AMS). Using a similar model as a basis, Chen and o~hers calcu- 
lated the characteristics of a free vertical jet in the near-range [6] and long-range [7] 
field of action of buoyancy. The results were correlated so as to follow the development of 
free convection in zones of jet flow without the influence of volume changes, mixed convec- 
tion, and the predominance of free-convective flow. The influence of buoyancy effects in cir- 
cular free jets was studied in [8, 9]. We should note the work [i0] for boundary flows, where 
the AMS method was used to study free-convective flows from heated walls. 

The goal of the present work is to study the flow structure and heat exchange in a verti- 
cal turbulent semiinfinite gas jet in a gravity field. The works [ii, 12] examined the prop- 
erties of the solution of a similar problem for laminar flow with a different orientation of 
the submerged plate. 

Figure 1 shows a diagram of the two-dimensional flow being studied. A plane gas jet is 
discharged with a certain initial velocity uo from a nozzle of finite dimension Lo. The flow 
develops along a vertical wall heated to the temperature T w. The temperature of the still 
surrounding medium is equal to the temperature of the jet at the nozzle outlet. We will ana- 
lyze steady flow, satisfying boundary-layer approximations. In this case, the problem reduces 
to integration of the following system of equations: 

o-7- (ou) + (pv) = o, ( l )  

0,, o. o ( ptt--~x ~- po-- -- (~tef g(p~ --p), (2) 
Og Oy 0~r ] ' 

OT OT O (p~ef OT) 
p u ~ q - p v - -  -- . (3) 
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Fig. i. Comparison of experimental data from [17, 18] 
(a) and [19] (b) with theoretical profiles. 

System (1)-(3) is supplemented by the thermal equation of state for an ideal gas. Within 
the framework of the turbulence model bieng used, the effective viscosity is a function of the 
TKE and the rate of its dissipation. 

Allowing for the generation and disappearance of turbulence under the influence of body 
forces makes it necessary that we model the correlation < p'u' > on the basis of information 
on the turbulent flows of mass and heat. The flows of the substances being transported by 
turbulence are calculated from local values of three scalar quantities K, e, and < T '2 >. 
The transport equations for these correlations are represented as follows: 
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(6 )  

where I is convection; II, turbulent diffusion; III, generation; and IV, viscous dissipation. 

We used the values recommended in [13] for the constants in the model. The assumption 
that free convection causes anisotropy of the small-scale components of turbulence is the rea- 
son for the scatter of the values of CT= used in the literature [8]. However, in the absence 
of direct empirical material on this problem, we decided to take the value used in [1.3] for 

CT2. 

We further postulate the existence of a connection between pressure and density pulsa- 

tions 

<p'u'>- <T't;~ <T'u'>, 
<T,~> 

where in the limiting case of small fluctuations 

( T " >  r=<r, =----T-" 

The additional assumptions have to do with the need to model the correlation < T'u' >, which 

we write in the form [9]: 

< T'u'> = Cp~(K < T'~>)1/2. (7) 

The turbulence model is closed by the equation for eddy viscosity 
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K 2 

8 
(8) 

where the coefficient 

qA 
I 

1 + [ t e r m  III 1t 
term IV 

(9) 

in the limiting case of "equilibrium" turbulence (term III= term IV) is equal to i~ The dif- 
ference between the coefficient and unity in other cases is connected with the lack of simili- 
tude between the transfer of shear stress and its generation~ 

The basic equations for the characteristics of pulsative motion are invalid near solid 
walls. It is therefore difficult to formulate boundary conditions, since they are generally 
a simplified form of laws of conservation. One method of correctly describing turbulent flow 
near solid walls introduces "boundary" functions [14] reflecting knowledge of the empirical 
characteristics of heat and mass transfer near walls. Using empirical data on local "equilib- 
rium" turbulence in the wall region [3], we will formulate boundary conditions for K and ~. 
Here it follows from the "equilibrium" analog of the balance for K, without allowance for the 
generation term due to body forces, that 

G = %/~, (lO) 

�9 / \0u (10a) 

Equation (10a) is modified with allowance for the agreement between the Prandtl model proposed 
as a basis for describing boundary flow and the K--a model at the boundary of the viscous sub-- 

layer [15]. Tb:(ZFb)Zll 0Ul 2 , from which it follows that 
\ 0y ]Y=Yb 

SL. {ll) 
S b :  • 

The v a l u e  o f  ~b was c a l c u l a t e d  u s i n g  " b o u n d a r y "  f u n c t i o n s  m o d i f i e d  to  a l l o w  f o r  f r e e - c o n v e c -  
t i v e  f l o w s .  A l so ,  t h e  g r a d i e n t s  o f  t he  q u a n t i t i e s  c h a r a c t e r i z i n g  p u l s a t i v e  m o t io n  were  a s -  
sumed to  have  a v a l u e  of  z e r o  n e a r  t he  w a l l .  

The initial conditions for K, r and < T 'a > are written as follows: 

Ko = const u02, const << !; 

8 = CD c o n s t  % l ;  ( 1 2 )  
K~/2 

const L o ' 

I " < To > = const (r~, -- T~)% const << 1. 

Thus,  t h e  f o r m u l a t i o n  o f  t he  b o u n d a r y  c o n d i t i o n s ,  which i s  s u b j e c t  to  t h e  s o l u t i o n  of  
sy s t e m ( 1 ) - ( 6 ) ,  a p p e a r s  as f o l l o w s :  

t2 -~ 
I O < g < Lo and x = O; u : uo, T : To, K =  Ko, 8 : so, < T ):<To >; 

I F : 0  and x ~ 0 ;  u = V = 0 ,  T = T ~ ,  K = K ~ ,  g = s ~ ,  <T ' ">  = 0 ;  (13) 
r t ~ [y- -~oo and X ~ 0 ;  T = T ~ ( : T 0 ) ;  u : K = 8 =  < r  > = 0 .  

Le t  us examine  an " e q u i l i b r i u m "  a n a l o g  o f  the  t u r b u l e n c e  model b e i n g  used .  Assuming t h a t  
t he  g e n e r a t i o n  of  t u r b u l e n c e  due to  d e f o r m a t i o n  o f  t h e  mean f low and t h e  e f f e c t s  o f  buoyancy  
are equal to its dissipation, Eqs. (4)-(6) degenerate into a system which describes the "local- 
equilibrium" case of turbulence: 

( 0"  ~ 2 ( c?T) 2 =CT2p <T '~) (14) ~t\Oy ] + G  g(K<T ,~ > ) ~ / 2 = p ~ ;  Cr~,u~\Oy ) 
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FAg. 2. D i s t r i bu t i ons  of p ro f i l es  of mean v e l o c i t i e s ,  tem- 
peratures, TKE (solid line), and effective viscosity (dashed 
line) in a jet on a vertical heated plate: a, c) With al- 
lowance for buoyancy effects; b, d) without allowance for 
same; I) x = 0.13 m; 2) 0.61; 3) 2.29; 4) 4.31. 

Excluding < T'2 > from the system of equations and considering the determination of the rate 
of dissipation of the TKE, we obtain 

2 
where 7. t is the turbulence scale, while the constant B = I /  C~CT1 

I / Cr2C~ 

known formula [16] 

ttt = pC~K 112l t 

and transforming Eq. (15), we obtain 

c p  , ( 8g aT 
~f = h + cU---w pli 1 /  \ ay ) ~ 7 oy (16) 

Without allowance for the work of buoyancy (g = 0), Eq. (16) coincides with the Prandtl for- 
mula for effective viscosity. 

The transport equations for pulsative correlations K, s, and < T '= > are similar in 
structure to the main parabolic equations for mean flow. They can be solved simultaneously 
with the equations for mean flow by the Patankar--Spalding integrointerpolational method in 
the variables x, w (w = ~/~ is a normalized stream function). A spatially nonuniform grid 

is used in the boundary region due to the considerable gradients of the individual variables, 
the dimensions of the body cells increasding from the wall to the periphery. 

Using Kolmogorov's well- 
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Fig. 3. Distribution of individual terms in the TKE balance equa- 

tion: i) ~ g < 0'u' >; 2) ~(C -- D) k; 3) e', 4) < u'v' > __~; 5) 

< p'u' > - < u'v' > a__uu. 
P 0y 

Fig. 4. Diagram of distributions of effective viscosity and turbu- 
lence scale with T w = 1000~ i) Prandtl formula; 2) K--a-< T '2 > 
model; 3) modified Prandtl formula; x, y, oi/2, m; ~, kg/m.sec. 

To compare calculated data with experimental results, we modeled the experiment conducted 
in [17, 18]. The subject of investigation was forced convection in a semiinfinite air jet 
traveling along a heated wall. It can be seen from Fig. 1 that the calculated distributions 
of u/uo, (T -- T~)/(T w -- T~), and TKE agree with the experimental profiles. The difference in 
the empirical and numerical results in the peripheral region has to do with the inadequacy of 
the boundary-layer model in describing the actual flow near the free boundary of the jet. We 
took the data from [19] for a test experiment for the regime of free turbulent convection. By 
analogy with [19], we calculated the thickness of the layer ~I, determined in accordance with 
a linear law of temperature change with respect to the transverse coordinate. We then com- 
pared experimental values of the ratio of the Archimedes number Arl = g(p~ -- pw)~/(0~v 2) to 
the Reynolds number Rel = u~1~i/v with calculated values. The two sets of values agree in the 
region of developed turbulent convection. 

Figure 2 presents diagrams showing the development of the profiles of velocity and tem- 
perature and the pulsative characteristics (TKE -- solid line, effective viscosity -- dashed 
line, dimensionless pulsations of temperature --i~solid line to the right) for different sec- 
tions x in a jet developing along a heated wall. Figures 2a, c were plotted with allowance 
for buoyancy effects, while Figs. 2b, d were plotted without consideration of same. It is ap- 
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parent that the presence of buoyancy qualitatively changem the structure of the flow. Where- 
as the maximum values of velocity and stress of the flow at the wall and the TKE increase as 
the flow develops if buoyancy is taken into account, these quantities decrease with increasing 
distance from the outlet section of the nozzle if buoyancy is ignored. The effective viscos- 
ity increases in both cases, although free convection increases the shear stress, while the 
region of maximum turbulent exchange approaches the wall. It is interesting to note that al- 
lowing for the free-convective source leads to thinning of the thermal boundary layer; the re- 
gion occupied by the flow is heated more weakly, and the level of the temperature pulsations 
in the boundary flow decreases. 

Figure 3 shows the behavior of the terms of the TKE balance equation in the section x = 
3.85 m and at a wall temperature T w = 500~ Here the terms of the TKE balance equations are 
multiplied by the quantity ol/2/U~a x. In the boundary region, where viscosity is important, 
generation of small-scale turbulence is accompanied by its viscous dissipation. At the point 
of the position of the maximum, the "deformed" part of the turbulence generation < u'v' > ~u/ 
~y decreases to zero, and the turbulence energy is generated by buoyancy forces g/p < p'u' >. 
In this region the curve showing the difference between convection and diffusion of the TKE 
(I/p)(C --D) k takes negative values. Large energy-containing eddies are generated as the free 
boundary is approached, the large size of these eddies leading to a long period of existence, 
with displacement in the direction of flow development ((C -- D) k > 0). 

Analysis of the distributions corresponding to individual terms of the TKE balance equa- 
tion show that the convection of the quantity < T'2 > predominates over its turbulent diffu- 
sion at all points across the flow field. 

The use of the "equilibrium" models of turbulence is shown in Fig. 4. Shown for compari- 
son are the results of calculation of the characteristic turbulence scale and the effective 
viscosity using the Prandtl formula (solid line) 

(17) 

the modified Prandtl formula (16) (dashed line), and the "two-parameter" formula (8). Based 
on analysis of the dimensions in the last case, we determined the turbulence scale from the 
algebraic relation 

K312 
l~ = C . - -  (18) 

g 

Use is made in Eqs. (16), (17) of the Prandtl hypothesis of a "mixing length," which regards 
the turbulence scale as a "geometric" flow parameter. 

The maximum deviation between the predictions of the "equilibrium" model and the K--e-- 
< T '2 > model is seen on the initial section of jet development, as well as in the peripheral 
zone -- where three-dimensional transport by large eddies is important. The "equilibrium" mod- 
els of turbulence describe the distribution of the local linear scale in the internal part of 
the boundary layer well. In the region of predominance of free-convective flow (Fig. 4), mod- 
ified formula (16), in comparison to Eq. (17), more reliably describes processes of turbulent 

exchange. 

NOTATION 

K, kinetic turbulence energy; u', velocity pulsation; s, dissipation of kinetic turbulence 
energy; < T '2 >, mean square temperature pulsation; ~, laminar viscosity; Lo, nozzle dimen- 
sion; uo, initial velocity; Tw, wall temperature; p, density; u, v, components of velocity 
vector; g, acceleration due to gravity; ~ef, effective viscosity; ~t, eddy viscosity; T, tem- 
perature; o, Prandtl number; ok, Csl, C~3, oe, Cg2, O<T'2>, CTI, CT2, Cp, C~, CD, constants 
of the turbulence model; Tw, friction stress on the wall; I t, turbulence scale; ~, stream 
function; o~/2, half-width of jet; Nu x, Nusselt number; Umax, maximum velocity; (C -- D), dif- 
ference between convection and diffusion of individual transport quantity; b, subscript for 
first boundary component near the solid surface; • Karman constant. 
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